Fuzzy C-means method for clustering microarray data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy C-means Method for Clustering Microarray Data

MOTIVATION Clustering analysis of data from DNA microarray hybridization studies is essential for identifying biologically relevant groups of genes. Partitional clustering methods such as K-means or self-organizing maps assign each gene to a single cluster. However, these methods do not provide information about the influence of a given gene for the overall shape of clusters. Here we apply a fu...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

An Improved Initialization Method For Fuzzy C-Means Clustering Using Density Based Approach For Microarray Data

An improved initialization method for fuzzy cmeans (FCM) method is proposed which aims at solving the two important issues of clustering performance affected by initial cluster centers and number of clusters. A density based approach is needed to identify the closeness of the data points and to extract cluster center. DBSCAN approach defines ε–neighborhood of a point to determine the core objec...

متن کامل

Bilateral Weighted Fuzzy C-Means Clustering

Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...

متن کامل

Fuzzy c-means clustering of incomplete data

The problem of clustering a real s-dimensional data set X={x(1 ),,,,,x(n)} subset R(s) is considered. Usually, each observation (or datum) consists of numerical values for all s features (such as height, length, etc.), but sometimes data sets can contain vectors that are missing one or more of the feature values. For example, a particular datum x(k) might be incomplete, having the form x(k)=(25...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2003

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btg119